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Abstract

The Popov criterion is applied to control system
analysis and design. Nonlinear dynamic compen-
sators (NDC)  are int reduced which ensure absolute
stability without penalizing the available feedback.

1 Multiwindow Controllers and
Nonlinear Dynamic Compensation

Ivlultiwindow controllers  consisting of linear con-
trollers with nonlinear windows [1,2] perform su-
perior to linear controllers. They can be designed
using frequency domain methods, and their stabil-
ity can be assured by using describing functions.
However, the describing function methods are only
approximate. It is convenient to use the methods
to prove the system stability within each window,
but rather difficult to use the methods to rule out
the oscillations with the signal moving from win-
dow to window. It would be preferable to use de-
sign  methods based on the strict methods of abso-
lute stability. Such methods have been previously
described in [3,4] but only with examples made to
illustrate the achievable performance. While these
cxarnpl~s are of theoretical significance, but use inl-
practical very high-order controllers. 111 this paper,
a technique for suboptimal but simple, low-order
controllers with greatly improved performance is
presented. Here, we consider absolutely stable tw~
window controllers with local nonlinear feedback
producing the windows with the responses typical

in a real application.

2 Absolute Stability

Many practical feedback systems consist of a lin-
ear link 7’(s)  and a memoriless  (i.e. nondynarnic)
nonlinear link v(e) w shown in Fig. 1.

m
Figure 1: participation functions in composite con-
trollers
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Figure 2: Characteristic of the nonlinear ]iuk

The system is Asymptotically Globally Stable
(AGS) if it satisfies the Popov criterion [3 - 6], i.e.,
T(s) ha~ no poles in the right half-plane} and at al]
frequencies

li?e[(l + jqzu)T(jtu)]  > –1. (1)
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This system is said to bc absolutely stable (AS) if
it is asymptotically globally stable (AGS) with any
characteristic v(e) constrained by

0< 7)(e)/e <1 (2)
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w illustrated in Fig. 2. Hard and soft saturation,
dead zone, and three lCVC1 relay belong to the claw
of nonlinear characteristics clcfincd by (l).

To check whether a system satisfies the Popov cri-
terion, one needs to plot the Nyquist diagram for
(1+ qs)l’(s). If a q can be found such that the di-
agram stays to the right of the vertical line 1, the
system is AS. The Popov criterion (which is suffi-
cient but not necessary for AS) is more restrictive
than the Nyquist criterion (which is necessary but
not sufficient for AS).

3 Nyquist-Stable System
with Nonlinear Dynamic
Compensation (NDC)

Larger feedback and better disturbance rejection
are available in Nyquist-stable systems. The
Nyquist-stable systems are not AS when the com-
pensators are linear. Still, they can be made AS by
using nonlinear dynamic compensators. The NDC
can be designed using linear and non-dynamic non-
linear links. The NDC can be represented in the
form where the nonlinear links serve as nonlinear
windows for the signal, and different linear links
process the signal passing the nonlinear windows.
This architecture is a particular case of multiwin-
dow controller architecture discussed in [1,2],

IN the system shown in Fig. 3, the nonlinear link
1 – v(e) in the local feedback of the NDC uses the
same nonlinear function v(e) M the nonlinear link
of the actuator. Typically, v(e) is a saturation link
so that 1 – v(e) represents a dead zone. The rest of
the links in the block diagram are linear. For the
AS analysis, it can be assumed that the command
signal is 0.

We denote  by Tp the return ratio for the plant mea-
sllrcd when the link v is replaced by 1 (and the link
1 – v, by O). Then, the compensator transfer func-
tion for small level signals is expressed as TP/P.
When the signal level is very large, the return ratio
iu the NDC  local loop becomes G.

Figure 3: Feedback system with nonlinear link v in
the actuator and link 1 – u in the feedback path of
the NDC

4 Reduction to Equivalent System

The diagram shown in Fig. 3 depicts a system that
has two identical nonlinear links v(e),  with the same
input sigmal  e and, therefore, the same output sigmal
v. For the sake of stability analysis, the system
can be modified equivalently into the one shown in
Fig. 4, which contains only one nonlinear link v,
The linear links within the dashed envelope form a
composite linear link. We denote the negative of
its transfer function T E (equivalent return ratio),
If TE satisfies the Popov criterion, the system must
be globally stable.

-----------------  . --------  .

----------------------------------

Figure 4: Equivalently transformed system contain-
ing a single nonlinear link v

To find the expression for TE , the diagram in Fig.
4 is further redrawn as shown in Fig. 5.

Figure 5: Calculation of TE: two parallel paths and
a loop tangent to both paths

From this diagram, using MriSOIIS rule [7], the nega-
tive of the transfer function from the output of the
nonlinear link to its input is

T P - G
T E

=  ~+G (3)

Given TE and TP, the NDC linear link transfer
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function is extra clcsign  flexibility leads to better performance
ss will bc shown in the following rlcsign cxatnples.

~_ Tp– TE

I-FTE

From (4), the plant feedback is

(4)

l+ TP=(l+G)(l+TE) (5)

5 Positive and Negative Feedback

Equation (5) states that the plant feedback in the
linear mode of operation is the product of the feed-
back in the NDC for large signals, and the feedback
in the equivalent system,

We follow the Bode and Black [4] definition of the
negative feedback as the c~e when the feedback
reduces the output signal, i.e. the modulus of the
return difference is more than 1. Positive feedback
is defined as regenerative feedback, i.e. the feedback
increasing the closed loop gain, i.e. the feedback
when the return ratio magnitude is less than 1.

Generally, as follows from Bode theorems, the inte-
gral of log 11 + Tpl along the linear frequency axis
is zero [4,5]. This means that the integral over the
band where the integrand is positive (i.e. the feed-
back is negative) equals the area where the inte-

grand  is negative (the feedback is positive), The
same is valid for G and TE. Therefore, the areas of
substantial positive feedback in the G and TE loops
should not overlap or else the posit ivc feedback in
the plant will be excessive and the phase stability
margin in the plant loop, correspondingly, small,
If positive feedback in each loop is substantial, the
crossover frequency of TE (jw) must bc eit hcr much
smaller or much larger than the crossover frequency
of G(jw).  111 this cwse the area of positive feedback
for Tp can be increased, and corrcsponding]y,  the
area of negative feedback will increase,

Wc can scc the advantage of a system with an NDC
as follows: in a convcntior;al  systcm,  Tp must sat-
isfy the Popov criterion, but in a systcm  with an
NDC, the only requirements arc that Tp satisfies
tlw weaker Nyquist criterion, and that TE, defined
by (3), satisfies the Popov criterion. Exploiting this

3

There still exists some freedom in choosing the rt+
SpOIEXX for G and TE. This freedom can be utilized
for the provision of desired transient responses for
large level signals, especially for homing systems
where command feedforward [5] cannot be intro-
duced.

In the most practical cases, the link v(e) is a satura-
tion and 1 – v(e), a dead-zone link. If the thresholds
in the actuator and in the nonlinear link within the
NDC are different, a k-times scaling can be em-
ployed as shown in Fig. 6.

Figure 6: Scaling down the nonlinear link in the
NDC by a factor of k

6 Design examples

A controller for a gimbaled  actuator for Csssini
spacecraft was designed following the block-
diagram Fig. 3, and was briefly described in [2].
Here, we present several simple textbook-type ex-
amples [5] with rather low-order controllers that can
be easily simulated. These examples demonstrate
the advantage of using asymptotically stable multi-
window controllers for the systems where the com-
pensators are kept low-order. The performance can,
however, be further improved by using higher order
compensators.

Example 1

The plant transfer function is P = 1/.9. With the
compensator function

Tp 2(s + 0.5)—=—
P S(S + 2)

the plant  return ratio is

.9 + 0.5
‘p = 2. s 2 ( .$ + 2)

(G)

(7)

American Iustitutc of Aeronautics and Astronautics



The slope of the asymptotic Bode diagram is -12
dB/oct at lower frequencicx and 6 dB/oct within
onc octave  to the right and to the left from the
crossover frequency of 1, as shown in Fig. 7. Since
the employed compensator is low order, stability
margins in phase and gain are not well balanced
and the disturbance rejection is not the maximum
available.

With such loop transfer function and a single non-
linear element in the actuator, the system is prone
to have windup in the response to large amplitude
step commands. The NDC must make the sys-
tem AS with large stability margins in TEand  im-
prove the system transient responses in the nonlin-
ear mode of operational ,2,4,5]. The large margins
can also eliminate the process instability [4,5].

We will start the design by a guessed response for
T E  EM

2
TE=—

S(s + 2)

dB

40

30 -

0
.125 .25 .5

.10-

Figure 8: Lplane  plots for Example 1

equations are still sat isfied. With this replacement,
i.e. with G = 2/[s(s + 2)], the transfer function
G(s)/[Tp(s)/P(s)] of the link in the feedback path
of the NDC will be simplified:

Figure 7: Asymptotic Bode diagrams for AS sys-
tems in Example 1.

This response merges with TP at higher frequencies
but has less slope  at lower frequencies and, corre-
spondingly, less phase lag. With such TE, from (4),
the NDC local loop return ratio

G=
1

S(S2 + 2s + 2)
(9)

The plots for Tp,  G and T E on the logarithmic
Nyquist plane (L-plane) arc shown in Fig. 8.

Since G and T E enter the equations (3) and (5)
symmetrically, if we interchange G and T E, t he

(8)

2/ 2(s + 0.5) _ 2
S(s + 2) S(s + 2) 2 s + 1

(lo)

The stability margin in T E is now reduced, but
the system still  remains globally stable with rather
large margins (although not process stable),

The system transient responses to the step com-
mand are shown in Fig. 9. To make the responses
easier to compare, the step command value is kept
the same, 1, and the threshold of the saturation var-
ied so that small thresholds correspond to “large”
commands, i.e. commands large relative to the ac-
tuator threshold. In (a), the output response shown
in the linear mode of operation, i.e. simulated with
setting the threshold of saturation and the dead
zone to large values, The overshoot is close to 50Y0.
In (b), the saturation threshold is 0.2, and the dead
zone set to a large value so that the NDC  local feed-
back does not pass the signal. It is seen that the
system has a large windup. In (c), the dead zone is
set equal to the saturation threshold (M must be),
each of 0.2, The  response has  no overshoot. Sim-
ilar responses, wit bout an overshoot, appear when
the threshold and the dead zone are set to smaller
value, 0.1 in (d) only the SICW rate is correspond-
ingly smaller. Fig. (c) shows the signal  at the out-
put of the actuator for the case (d). The actuator
works nearly  in time-optitnal  way, full power un-
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t,il the output approaches the command. In (f), the
output is shown for the threshold and the dead zone
set to 0.5. This case in intcrmcdiatc between the
linear ctwc with 50% overshoot and the case with
the threshold smaller than 0,2 when the overshoot
disappears.
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Figure 9: Output transient response of a system
with a linear controller (a) and of AS systems (b)-
(e), and of actuator output in Example 1.

This kind of performance is clesirable for sys-
tems  without prefilters  or command feedforwarding
where the output should not exceed the command
by more than a certain specified value. Therefore,
pcrcentwisc,  rather large overshoots are allowed in
responses to small commands and disturbances, but
not for the responses to large  commands and dis-
tlwbanccs.

Example 2

The pklt  transfer function is P = 1/s. With a

5

compcnsat  or

T p 2(s + 0.5)(s + 0.1)—=
P .4(S + 2) (11)

which has an extra pole at zero frequency compared
with the previous example, the plant return ratio is

Tp 2(s + 0.5)(s + 0.1)—=
P S3 (s + 2)

The Bode diagTam is shown in Fig. 10,
is Nyquist stable.

(12)

The system

With the same TE = 2/[s(s + 2)] as in the previous
example, from (4),

(1.2s + 0.1)
G = S2(S2  + 2s + 2)

(13)

The as~mDtotic  Bode diagrams for these functions-.
are shown in Fig. 10, and  the plots on the “ “
in Fig. 11.
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Figure 10: Asymptotic Boclc diagrams for
tcms in Example 2

L-plane,

AS SyS-

Example 3

If in the previous two examples, the plant transfer
function is 1/s2 , and the same loop responses arc
preserved by correspondingly changing the compen-
sator, the system will remain absolutely stable and
process stable, hut  the transicut responses to large
command step functions will exhibit large uudcr-
shoot. This undershoot persists for a long time m
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Figure 11: Lplane plots Example 2

the result of reduced gain of the nonlinear dynamic
compensator for large signal levels.

It is impossible to simultaneously provide good
transient responses for large level signals and pre-
serve process stability. One of this desirable fea-
tures (certainly the second one is less significant)
for practical applications must be sacrificed.

Thus, for the systems with 1/s2 plants, the non-
linear dynamic compensator must only guarantee
global  stability. Although the process stability is
not guaranteed, the errors caused by the process
instability will be insignificant [4].
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